Exam #1 Objectives

CHEM 1050 Chemistry and the Citizen

Text Reading

Chapter 1: sections 1-4 Chapter 2: sections 1-7 Chapter 3: sections 1-7

Homework Assignment

Chapter 1: 25, 28, 48

Chapter 2: 1, 3, 6, 8, 9, 13, 14, 18, 21, 22, 24, 26, 27, 39, 41, 51, 54, 56, 59, 62, 79, 84

Chapter 3: 1, 2, 4, 9, 11, 14, 18, 26, 35ad, 38c, 43

Concepts

- 1. Write the proper symbols (including capitalization) and correct spelling for the elements in columns 1a-2a and 3a-8a in the periodic table as discussed in class. You will be given either the symbol or the name and asked to provide the corresponding name or symbol.
- 2. Classify matter using the following terminology: substance, element, compound, and mixture.
- 3. Explain and discuss the scientific method as presented in lecture.
- 4. Explain the difference between a number and a measurement.
- 5. Convert between standard (floating) and accepted scientific notation.
- 6. Count the number of significant figures in numbers and measurements.
- 7. Demonstrate the ability to take a measurement and use the proper number of significant figures depending on the measuring instrument.
- 8. Distinguish between a base unit and a derived unit.
- 9. Know the six metric prefixes discussed in lecture.
- 10. Use dimensional analysis when doing any problems that require units.
- 11. Report calculations using the proper number of significant figures.
- 12. Distinguish between mass and weight.
- 13. Convert between the Fahrenheit and Celsius temperature scales and the Celsius and Kelvin temperature scales.
- 14. Distinguish between the three common physical states of matter.
- 15. Demonstrate the ability to do problems that involve specific heat.

Exam #1 Objectives

CHEM 1050 Chemistry and the Citizen

16. Demonstrate a working vocabulary of the following terms:

accuracy base unit calorie centi chemical symbol compound condensation conversion factor deci density dimensional analysis element energy evaporation exact number experiment freezing	giga heat heterogeneous homogeneous hypothesis joule kilo liquid mass measurement melting metric system micro milli mixture precision prefix	scientific method scientific notation SI system significant figures solid specific heat standard notation state of matter sublimation substance temperature theory uncertainty volume weight work
experiment freezing gas	precision prefix rounding	work

17. Memorize and demonstrate the ability to use the following equation(s):

$$d = \frac{m}{V}$$
 heat = (specific heat)(mass)(ΔT)

18. Recognize and demonstrate the ability to use the following equation(s) (you will be given these equations):

$$T_K = T_C + 273.15 \text{ (exact)}$$
 $T_F = 1.8(T_C) + 32$ $T_C = \frac{(T_F - 32)}{1.8}$