Exam #4 Objectives

CHEM 1050 Chemistry and the Citizen

Text Reading

Chapter 9:	sections 1-6
Chapter 10:	sections 1-5, 7
	note: I will not test you on naming acids

Homework Assignment

Chapter 9:	2, 5, 9, 12, 22, 24, 27, 31, 34, 37ab, 41, 47, 55, 66
Chapter 10:	1, 8, 9, 12, 13, 18, 26, 30, 32, 34, 39, 42, 54, 55abc

Concepts

- 1. Demonstrate the ability to do calculations based on molarity, % (m/v), and % (m/m).
- 2. Demonstrate the ability to do dilution calculations.
- 3. Distinguish between nonelectrolytes, weak electrolytes, and strong electrolytes.
- 4. Identify Arrhenius acids and bases.
- 5. Identify Brønsted-Lowry acids and bases.
- 6. Identify and write conjugate acid-base pairs.
- 7. Write the chemical formulae for the six common, strong acids.
- 8. Given a neutralization equation, identify the Brønsted-Lowry acids and Brønsted-Lowry bases.
- 9. Using the ion-product equation, convert between hydronium and hydroxide ion concentrations.
- 10. Demonstrate the ability to determine whether given conditions are acidic, basic, or neutral based on the hydronium ion concentration.
- 11. Given the hydronium or hydroxide ion concentration, calculate the pH.
- 12. Given the pH, calculate the hydronium ion concentration.
- 13. Demonstrate the ability to determine whether given conditions (at room temperature) are acidic, basic, or neutral based on pH.
- 14. Discuss the purpose and requirements for buffer solutions.

CHEM 1050 Chemistry and the Citizen

15. Demonstrate a working vocabulary of the following terms:

acid	hypotonic	pН
acidic	indicator	salt
Arrhenius theory	ion-product equation	self-ionization
base	isotonic	solubility
basic	"like dissolves like"	solute
Brønsted-Lowry theory	K _w	solution
buffer	miscible	solvent
conjugate acid	molarity	strong acid
conjugate base	neutral	strong electrolyte
dilution	neutralization	titration
electrolyte	nonelectrolyte	weak acid
hydronium ion	osmosis	weak electrolyte
hydroxide ion	percent mass/mass	
hypertonic	percent mass/volume	

16. Recognize and demonstrate the ability to use the following equations (you will be given these equations):

molarity =
$$\left(\frac{\text{moles solute}}{\text{liters of solution}}\right)$$
 $C_1V_1 = C_2V_2$
% $(m/v) = \left(\frac{\text{mass solute in g}}{\text{volume solution in mL}}\right)(100 \%)$
% $(m/m) = \left(\frac{\text{mass solute in g}}{\text{mass solution in g}}\right)(100 \%)$

17. Memorize and demonstrate the ability to use the following equations:

$$\mathbf{K}_{\mathrm{W}} = \begin{bmatrix} \mathbf{H}_{3}\mathbf{O}^{1+} \end{bmatrix} \begin{bmatrix} \mathbf{O}\mathbf{H}^{1-} \end{bmatrix} \qquad \mathbf{p}\mathbf{H} = -\log \begin{bmatrix} \mathbf{H}_{3}\mathbf{O}^{1+} \end{bmatrix} \qquad \begin{bmatrix} \mathbf{H}_{3}\mathbf{O}^{1+} \end{bmatrix} = \mathbf{10}^{-\mathrm{p}\mathrm{H}}$$