Exam #4 Objectives

CHEM 1100 General Chemistry II

Text Reading

Chapter 16: sections 1-8, 10

Homework Assignment

McGraw-Hill LearnSmart and Connect online assignments.

Concepts

- 1. Write the autoionization reaction for water and connect the concept to the ion-product constant of water.
- 2. Write equilibrium reactions and equilibrium equations for strong and weak acids and for weak bases.
- 3. Demonstrate the ability to use the "p" function in calculations.
- 4. Demonstrate an understanding of the pH concept.
- 5. Rank substances as acidic, basic, or neutral by comparing the relative concentrations of H⁺ and OH⁻ and by using the pH scale.
- 6. Convert between [H⁺], [OH⁻], *pH*, and *pOH* for given concentrations of strong acids and hydroxide bases.
- 7. Do calculations based on the relationship between $[H^+]$, $[OH^-]$, and K_w .
- 8. Convert between K_a and K_b .
- 9. Demonstrate an understanding of the differences between K_{a1} , K_{a2} , etc. and K_{b1} , K_{b2} , etc.
- 10. Do calculations based on the relationship between K_a , K_b , and K_w .
- 11. Calculate K_a or K_b from equilibria data and apply simplifications when appropriate.
- 12. Predict and calculate the acidic and basic properties of salt solutions.
- 13. Calculate the pH and the concentrations for all species in solution for polyprotic acids.
- 14. Demonstrate a working vocabulary of the following terms:

acidic	ındıcator	pK_b
acid ionization constant	K_a	pK_W
Arrhenius theory	K_b	pOH
autoionization	$K_{\scriptscriptstyle \mathcal{W}}$	polyprotic
base ionization constant	neutral	strong
basic	"p" function	weak
Bronsted-Lowry theory	pН	
conjugate pairs	pK_a	

Exam #4 Objectives

CHEM 1100 General Chemistry II

15. Memorize and demonstrate the ability to use the following equation(s):

$$[H_3O^+][OH^-] = K_w$$

$$pX = -\log[X] \qquad [X] = 10^{-X}$$

$$[X] = 10^{-X}$$

$$pH = -\log[H^+] \qquad [H^+] = 10^{-pH}$$

$$\left[H^{+}\right] = 10^{-pH}$$

$$K_a K_b = K_b$$

$$K_a K_b = K_w \qquad pK_a + pK_b = pK_w$$