Participation Assignment CHEM 1100-General Chemistry II

Name:			•	#9
Section: 31, TR			Due Date: Thursday 2/7/20	19
1. A mixture of $0.0500~\rm M~NO_2$ and $0.0500~\rm M~N_2O_4$ is allowed to come to equilibrium. Calculate the equilibrium concentrations of all the chemical species. $\rm K_c$ is 216 at 25 °C.				
	2NO ₂ (g)	=	$N_2O_4(g)$	
2. Le Châtelier's principle:				
Stress:				

Change the temperature

$$Co(H_2O)_6^{2+}(aq) + 4Cl^{1-}(aq) \rightleftharpoons CoCl_4^{2-}(aq) + 6H_2O(l)$$

3. Assume the reaction between zinc sulfide, ZnS, and oxygen is at equilibrium and predict what will happen to the concentration of SO_2 in each of the following cases:

$$2ZnS(s) + 3O_2(g) \rightleftharpoons 2ZnO(s) + 2SO_2(g) \Delta H^\circ = -904 \text{ kJ}$$

a. Add more O_2

e. The temperature is raised

b. Remove some O_2

- f. The temperature is lowered
- c. Container volume is decreased
- g. Some ZnS is removed.

d. Overall pressure is decreased